API Reference

Complete reference for all ThalosForge classes and functions.

thalosforge.optimize()

Main entry point for all optimization tasks. Unified interface for all ThalosForge optimizers.

optimize(func, bounds, method='quantumjolt', max_evals=1000, constraints=None, n_objectives=1, seed=None, callback=None, options=None)

Parameters

NameTypeDescription
func callable Required. Objective function to minimize. Takes array x, returns scalar (or list for multi-objective).
bounds list of tuples Required. List of (min, max) bounds for each dimension.
method str Optional. Optimizer: 'quantumjolt', 'dss', or 'kestrel'. Default: 'quantumjolt'
max_evals int Optional. Maximum function evaluations. Default: 1000
constraints list of dict Optional. Constraint functions. Each dict: {'type': 'ineq'|'eq', 'fun': callable}
n_objectives int Optional. Number of objectives for multi-objective. Default: 1
seed int Optional. Random seed for reproducibility. Not needed for DSS.
callback callable Optional. Called after each iteration: callback(xk, fk, iteration)
options dict Optional. Method-specific options. See individual optimizer docs.
Returns: OptimizationResult object containing solution and metadata.

Example

import thalosforge as tf
import numpy as np

def sphere(x):
    return np.sum(x**2)

result = tf.optimize(
    sphere,
    bounds=[(-5, 5)] * 10,
    method='quantumjolt',
    max_evals=1000
)

print(result.fun)   # Best objective value
print(result.x)     # Best solution vector
print(result.nfev)  # Number of evaluations used

OptimizationResult

Container for optimization results. Returned by optimize().

Attributes

NameTypeDescription
xndarrayBest solution found
funfloatObjective value at best solution
nfevintNumber of function evaluations
nitintNumber of iterations
successboolWhether optimization converged
messagestrTermination message
historylistOptimization trajectory (if recorded)
pareto_frontlistPareto solutions (multi-objective only)

thalosforge.set_api_key()

Set API key for cloud features and premium support.

set_api_key(key)
import thalosforge as tf
tf.set_api_key("tf_live_abc123...")

class QuantumJolt

High-dimensional SPSA-based optimizer with adaptive learning rates.

QuantumJolt(dim, bounds, a=0.1, c=0.01, alpha=0.602, gamma=0.101, A=100)

Methods

MethodDescription
optimize(func, max_evals)Run optimization
step(func)Single optimization step
reset()Reset optimizer state
get_best()Return current best solution
from thalosforge.optimizers import QuantumJolt

optimizer = QuantumJolt(
    dim=100,
    bounds=[(-5, 5)] * 100,
    a=0.1,
    c=0.01
)

result = optimizer.optimize(objective, max_evals=5000)

class SpiralSwarmDSS

Deterministic Spiral Search using Fibonacci lattice sampling.

SpiralSwarmDSS(dim, bounds, beta_adaptive=True, contraction_rate=0.618)

Methods

MethodDescription
optimize(func, max_evals)Run deterministic optimization
step(func)Single spiral iteration
get_trajectory()Return full search path
from thalosforge.optimizers import SpiralSwarmDSS

optimizer = SpiralSwarmDSS(
    dim=20,
    bounds=[(0, 10)] * 20,
    beta_adaptive=True
)

# 100% reproducible - no seed needed
result = optimizer.optimize(expensive_sim, max_evals=200)

class KestrelPro

Constrained and multi-objective optimizer.

KestrelPro(dim, bounds, n_objectives=1, population_size=50)

Methods

MethodDescription
optimize(func, max_evals, constraints)Run constrained optimization
add_constraint(type, fun)Add constraint function
get_pareto_front()Return Pareto-optimal solutions
hypervolume()Calculate hypervolume indicator

class Saturna

Model calibration maintenance layer for ONNX models.

Saturna(model_path, lambda_blend=0.3, temperature=0.9)

Methods

MethodDescription
calibrate(X)Learn baseline distribution from data X
predict(X)Run inference with drift correction
predict_proba(X)Return probability predictions
stability_index()Return calibration health score (0-1)
status()Return JSON status summary
reset()Clear calibration state
from thalosforge import Saturna

saturna = Saturna(
    model_path="model.onnx",
    lambda_blend=0.3,
    temperature=0.9
)

# Initial calibration
saturna.calibrate(X_train)

# Production inference
predictions = saturna.predict(X_new)

# Check health
if saturna.stability_index() < 0.8:
    print("Warning: Calibration degrading")

class DosageController

Robotic motion smoothing through gradual command injection.

DosageController(update_rate=100, strategy='adaptive')

Methods

MethodDescription
set_limits(max_velocity, max_acceleration, max_jerk)Configure safety limits
dose(target)Generator yielding smooth command sequence
emergency_stop()Trigger immediate safe stop
detect_oscillation()Check for motion instability
get_trajectory()Return planned trajectory
from thalosforge import DosageController

controller = DosageController(
    update_rate=100,
    strategy="scurve"
)

controller.set_limits(
    max_velocity=1.0,
    max_acceleration=2.0,
    max_jerk=5.0
)

# Smooth motion to target
for cmd in controller.dose([1.5, -0.3, 0.8]):
    robot.send(cmd)
    time.sleep(0.01)

thalosforge.benchmark()

Run standardized benchmarks comparing optimizers.

benchmark(methods, problems, n_runs=30, max_evals=1000)
import thalosforge as tf

results = tf.benchmark(
    methods=['quantumjolt', 'dss', 'scipy-de'],
    problems=['rastrigin', 'ackley', 'griewank'],
    n_runs=30,
    max_evals=5000
)

print(results.summary())
results.to_csv("benchmark_results.csv")

Test Functions

Standard optimization test functions included in ThalosForge.

from thalosforge.benchmarks import (
    rastrigin,
    ackley,
    griewank,
    rosenbrock,
    schwefel,
    levy,
    sphere
)

# All functions take ndarray, return scalar
x = np.zeros(10)
print(rastrigin(x))   # 0.0 (global minimum)
print(ackley(x))      # 0.0 (global minimum)
FunctionGlobal MinimumBoundsCharacteristics
rastrigin0 at origin[-5.12, 5.12]Highly multimodal
ackley0 at origin[-5, 5]Many local minima
griewank0 at origin[-600, 600]Product term
rosenbrock0 at ones[-5, 10]Narrow valley
schwefel0 at 420.97[-500, 500]Deceptive
levy0 at ones[-10, 10]Multimodal
sphere0 at origin[-5, 5]Convex (easy)